Compactly supported tight affine spline frames in L 2 ( IR d )
نویسندگان
چکیده
The theory of [RS2] is applied to yield compactly supported tight affine frames (wavelets) in L2(IR ) from box splines. The wavelets obtained are smooth piecewisepolynomials on a simple mesh; furthermore, they exhibit a wealth of symmetries, and have a relatively small support. The number of “mother wavelets”, however, increases with the increase of the required smoothness. Two bivariate constructions, of potential practical value, are highlighted. In both, the wavelets are derived from four-direction mesh box splines that are refinable with respect to the dilation matrix ( 1 1 1 −1 ) . AMS (MOS) Subject Classifications: Primary 42C15 41A15 41A63, Secondary 42C30
منابع مشابه
Compactly Supported Tight Aane Spline Frames in L 2 (ir D ) Compactly Supported Tight Aane Spline Frames in L 2 (ir D )
The theory of RS2] is applied to yield compactly supported tight aane frames (wavelets) in L 2 (IR d) from box splines. The wavelets obtained are smooth piecewise-polynomials on a simple mesh; furthermore, they exhibit a wealth of symmetries, and have a relatively small support. The number of \mother wavelets", however, increases with the increase of the required smoothness. Two bivariate const...
متن کاملCompactly Supported Tight Affine Frames with Integer Dilations and Maximum Vanishing Moments
When a Cardinal B-spline of order greater than 1 is used as the scaling function to generate a multiresolution approximation of L = L(IR) with dilation integer factor M ≥ 2, the standard “matrix extension” approach for constructing compactly supported tight frames has the limitation that at least one of the tight frame generators does not annihilate any polynomial except the constant. The notio...
متن کاملCompactly supported tight a ne spline frames in L 2 ( IRd ) Amos
The theory of RS2] is applied to yield compactly supported tight aane frames (wavelets) in L 2 (IR d) from box splines. The wavelets obtained are smooth piecewise-polynomials on a simple mesh; furthermore, they exhibit a wealth of symmetries, and have a relatively small support. The number of \mother wavelets", however, increases with the increase of the required smoothness. Two bivariate const...
متن کاملCompactly Supported Tight Affine Frames with Integer Dilations and Maximum Vanishing Moments1) by
When a Cardinal B-spline of order greater than 1 is used as the scaling function to generate a multiresolution approximation of L2 = L2(IR) with dilation integer factor M ≥ 2, the standard “matrix extension” approach for constructing compactly supported tight frames has the limitation that at least one of the tight frame generators does not annihilate any polynomial except the constant. The not...
متن کاملCompactly Supported Tight Affine Spline Frames in L
The theory of fiberization is applied to yield compactly supported tight affine frames (wavelets) in L2(R) from box splines. The wavelets obtained are smooth piecewise-polynomials on a simple mesh; furthermore, they exhibit a wealth of symmetries, and have a relatively small support. The number of “mother wavelets”, however, increases with the increase of the required smoothness. Two bivariate ...
متن کامل